
1. daisy:274 (Seacord, Robert C.)

2. daisy:268 (Plakosh, Daniel)

13. For elucidatory purposes, Figure 1 does not include checks to ensure that the correct number of arguments is passed to the
function. As a result, this program as listed is susceptible to crashes if argc < 3.

Range Checking
Robert C. Seacord, Software Engineering Institute [vita1]
Dan Plakosh, Software Engineering Institute [vita2]

Copyright © 2005 Pearson Education, Inc.

2005-09-27

Integer range checking, if implemented correctly, can eliminate vulnerabilities resulting from integer
overflow, truncation, and sign errors.

Development Context

Integer operations

Technology Context

C, C++, IA-32, Win32, UNIX

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the
behavior of the program.

Risk

Integers in C and C++ are susceptible to overflow, sign, and truncation errors that can lead to exploitable
vulnerabilities.

Description

The burden for integer range checking in C and C++ is placed squarely on the programmer’s shoulders.
Sometimes it’s relatively easy, sometimes it’s not. It’s relatively easy, for example, to check an integer
value to make sure it is within the proper range before using it to index an array. An out-of range value
(for example, a negative integer) can be used by an attacker to bypass a check on the upper bound of an
array and cause a buffer overflow. Figure 1 illustrates an example that uses both implicit type checking
and explicit range checks to prevent an out-of-range integer value from causing a potentially exploitable
vulnerability.13 The implicit type check results from the declaration, on line 3, of len as an unsigned
integer. In general, it is a good idea to use unsigned types for indices, sizes, and loop counters that
should never have negative values. The memcpy() call on line 7 is also protected by an explicit range
check on line 6 that tests both the upper and lower bounds.

Range Checking 1
ID: 308 | ######: 5 | ####: 28.03.06 11:55:50

daisy:274
daisy:268

21. daisy:318 (Strong Typing)

Figure 1. Implementation with implicit type and explicit range checking

1. #define BUFF_SIZE 10
2. int main(int argc, char* argv[]) {
3. unsigned int len;
4. char buf[BUFF_SIZE];
5. len = atoi(argv[1]);
6. if ((0 < len) && (len < BUFF_SIZE)) {
7. memcpy(buf, argv[2], len);
8. }
9. else
10. printf("Error copying data.\n");
11. }

Declaring len to be an unsigned integer is insufficient for range restriction because it only restricts the
range from 0..MAX_INT. The range check on line 6 is sufficient to ensure that no out-of-range values
are passed to memcpy() as long as both the upper and lower bounds are checked. Using both the
implicit and explicit checks may be redundant, but we recommend this practice as “healthy paranoia.”

In other cases, type range checking is more complicated. For example, if x is assigned the product of a,
b, and c, it is necessary to limit the range of a, b, and c so that the value of x cannot exceed the range of
values for whichever integer type x is declared. As integer variables are operated on multiple times in
combination with other integer values, it becomes increasingly difficult to ensure that an integer type
range error does not occur.

While this problem is difficult to solve, there are valid software engineering techniques that can help.
First, all external inputs should be evaluated to determine whether there are identifiable upper and lower
bounds. If so, these limits should be enforced by the interface. Anything that can be done to limit the
input of excessively large or small integers should help prevent overflow and other type range errors.
Furthermore, it is easier to find and correct input problems than it is to trace internal errors back to faulty
inputs.

Second, typographic conventions can be used in the code to distinguish constants from variables. They
can even be used to distinguish externally influenced variables from locally used variables with
well-defined ranges.

Third, strong typing21 should be used so that the compiler can be more effective in identifying range
problems.

Pearson Education, Inc. Copyright
This material is excerpted from Secure Coding in C and C++, by Robert C. Seacord, copyright © 2006
by Pearson Education, Inc., published as a CERT® book in the SEI Series in Software Engineering. All
rights reserved. It is reprinted with permission and may not be further reproduced or distributed without
the prior written consent of Pearson Education, Inc.

####

########

Copyright Holder Pearson Education

Range Checking 2
ID: 308 | ######: 5 | ####: 28.03.06 11:55:50

daisy:318

####

########

is-content-area-overview false

Content Areas Knowledge/Coding Practices

SDLC Relevance Implementation

Workflow State Publishable

Range Checking 3
ID: 308 | ######: 5 | ####: 28.03.06 11:55:50

